Cold nuclear matter effects in d+Au with high- p_T reconstructed jets at PHENIX Dennis V. Perepelitsa Columbia University for the PHENIX Collaboration Quark Matter 2012 Flash Talks Washington, D.C., USA 18 August 2012 #### Cold nuclear matter effects • p+A collisions are needed to establish a baseline for A+A: - \Rightarrow confirm that suppression in A+A is a final state effect - ⇒ probes centrality dependence of nPDF's - \Rightarrow tests pQCD & factorization at high x • At RHIC, we perform measurements in d+Au # CNM for pions in 2003 • π^0 measurement published by PHENIX: - ⇒ Phys. Rev. Lett. 98, 172302 (2007) - ⇒ data from RHIC 2003 run - \Rightarrow weak centrality dependence in R_{dA} - \Rightarrow low statistics at high- p_T #### Data selection - RHIC 2008 run, d+Au and p+p at $\sqrt{s_{NN}}=200$ GeV: - ⇒ 30x increase in statistics! - ⇒ Au-going beam-beam counter (BBC) used for centrality determination - \Rightarrow Glauber simulation used to calculate $\langle N_{\rm coll} \rangle$ #### Jets in PHENIX detector - Central arms, $|\eta| < 0.35$, $\Delta \phi = \pi$: - \Rightarrow charged tracks $p_{\rm T}^{\rm rec} > 400~{\rm MeV/c}$ in the Drift Chamber (DC), Pad Chambers (PC) - \Rightarrow neutral clusters $p_{\rm T}^{\rm rec} > 400$ MeV/c in the EMCal (EMC) ### Jet Reconstruction: I - Gaussian filter algorithm ($\sigma = 0.3$): - ⇒ continuous angular weighting, stable in HI background - \Rightarrow used successfully in p+p and Cu+Cu at PHENIX - \Rightarrow cross-checked with anti- $k_{\rm T}$ algorithm #### Jet Reconstruction: II - Jets out to 40 GeV/c are reconstructed at the detector energy scale: - \Rightarrow bin-by-bin unfolding to correct for p_{T} increase from mild $d+\mathsf{Au}$ UE - \Rightarrow small residual fake rate (< 5%) above > 9 GeV/c ## Jet $R_{\rm dA}$ - Mild suppression in **central events** at high- $p_{\rm T}$ - Moderate enhancement in **peripheral events** at high- p_{T} - ⇒ unexpected result! ## Jet $R_{\rm CP}$ Another way to look at the central/peripheral difference! - significantly reduced systematics - cleaner measurement of relative centrality dependence # Jet and new π^0 $R_{\rm CP}$ • Preliminary π^0/η measurement with 2008 data ... but hadrons & reconstructed jets have different p_T-scale... ## Jet and new π^0 $R_{\rm CP}$: Rescaled • Scale single hadron p_T by $1/\langle z \rangle$ using empirical $\langle z \rangle = 0.7$: - Excellent agreement in shape between jets and hadrons - ⇒ very different systematics - ⇒ large difference in behavior between central vs. peripheral collisions **not** an artifact of jet reconstruction #### Conclusion - Gaussian filter reco jets in RHIC 2008 d+Au and p+p - We observe a large centrality dependence in R_{dA} at high- p_{T} - ⇒ small suppression in central - ⇒ moderate enhancement in peripheral - Challenging to simultaneously explain both!